Что такое Apache Kafka
Допустим, в компании есть много разных компьютеров, которым нужно передавать между собой данные — отправлять и получать разную информацию. Apache Kafka — это, по сути, «почтовое отделение» для этих компьютеров. С Kafka можно обмениваться сообщениями быстро и надежно, даже если оба компьютера сильно нагружены или один из них временно выключен.
На техническом языке Apache Kafka — это распределенный брокер сообщений, который работает в режиме реального времени. Брокер — это система-проводник, которая преобразует информацию от отправителя, то есть источника данных (или producer), в сообщение получателя (consumer). Брокер состоит из серверов, которые объединяются в кластеры.
Простыми словами процесс выглядит так. Один компьютер (producer) хочет отправить сообщение другому компьютеру (consumer). Для этого он кладет сообщение в Kafka. Сообщение не удаляется и остается там до тех пор, пока получатель не захочет его раскрыть. Другой случай — если у producer много consumer. Каждый consumer может получать только те сообщения, которые ему нужны.
Kafka обычно используют, чтобы решать задачи с потоковой обработкой данных: сбор, обработка, анализ и хранение данных в реальном времени.
Если вам нравится работать с цифрами и таблицами, в онлайн-университете Skypro можно обучиться профессии «Аналитик данных». За 12 месяцев вы узнаете, как прогнозировать экономические показатели бизнеса, формулировать гипотезы на основе данных и многое другое. Если вы никогда не работали в IT и у вас другой опыт — не страшно. Во время учебы можно будет получить необходимую базу знаний и практические навыки.
Преимущества Apache Kafka
Вот какие качества характерны для распределенного брокера сообщений.
Отказоустойчивость
Kafka поддерживает надежную и устойчивую передачу данных даже при сбоях узлов.
Если один из серверов-брокеров выходит из строя, например из-за программного сбоя, Kafka продолжит работать без потери данных.
Вот как это происходит:
- Сначала Kafka автоматически создает несколько копий на разных серверах. Поэтому, если один сервер выходит из строя, данные всё равно доступны на других.
- Важный принцип деления потока данных называется топиком. Это базовая единица Kafka. Чтобы ускорить чтение и запись, топики можно разделить на партиции. У каждой партиции есть реплика, которая называется лидером, а еще несколько последователей. Лидер отвечает за обработку всех записей данных, а его копии (последователи) — резервные. Если лидер выходит из строя, один из последователей может быстро занять его место, чтобы поддержать непрерывность работы.
- Если сервер с лидером становится недоступным, Kafka переносит лидерство на другой сервер с копией данных. Этот процесс происходит автоматически.
- Еще Kafka помогает поддерживать процессы даже при аппаратных проблемах с физическим оборудованием.
Масштабируемость
Масштабируемость в Kafka означает, что система может увеличивать свою пропускную способность и обрабатывать большие объемы данных. За счет гибкости системы в Apache Kafka можно добавлять новые брокеры, менять количество реплик, настраивать параметры производительности и многое другое. Так адаптируют систему к разным требованиям и нагрузкам.
Высокая производительность
Kafka способен обрабатывать миллионы сообщений в секунду — система обеспечивает низкую задержку передачи. Это достигается благодаря оптимизации процессов записи и чтения данных и эффективному управлению сетевым вводом-выводом.
Один из ключевых принципов Kafka — асинхронная обработка сообщений. Так producer могут не блокировать свою работу, когда ждут подтверждения, получено ли сообщение. Всё это повышает скорость передачи данных.
Где применяется Apache Kafka
Apache Kafka часто используют в разных областях, особенно — в Big Data и Internet of Things (IoT). Первое нужно для развития искусственного интеллекта и работы с большими данными, например в банках или других крупных компаниях. Второе — это технологии, которыми люди пользуются в жизни: умный дом, робот-пылесос или автомобиль с автопилотом.
Big Data
Kafka используют для сбора, обработки и анализа потоков данных в реальном времени. Так компании анализируют большие объемы данных и принимают оперативные решения на основе актуальной информации.
Многие системы аналитики и мониторинга применяют Kafka для записи и хранения журналов событий, чтобы отслеживать и анализировать разные процессы и операции.
Kafka часто используют для обмена данными между микросервисами в распределенных приложениях, чтобы поддерживать надежную и масштабируемую связь между компонентами системы.
Internet of Things (IoT)
В IoT-системах, где устройства генерируют большие объемы данных, Kafka применяют для сбора и агрегации этих данных перед анализом и обработкой. Еще Kafka может служить центром для управления событиями в IoT-системах, чтобы поддерживать надежную передачу и обработку событий от различных устройств и датчиков.
В Skypro на курсе «Аналитик данных» с нуля научитесь писать запросы на языке SQL, работать с данными в Excel и программировать на языке Python. После учебы получите диплом о профпереподготовке и сможете найти первую работу по новой специальности. А центр карьеры в этом поможет: вам подскажут, как оформить резюме новичку и как вести себя на собеседованиях.
Главное об Apache Kafka
🔵 Apache Kafka — это распределенный брокер сообщений, который поддерживает надежный обмен данными между компьютерами в реальном времени.
🔵 Он гарантирует отказоустойчивость за счет механизмов репликации данных и переноса лидерства при сбоях. С помощью масштабируемости Kafka можно легко увеличивать пропускную способность системы через добавление новых брокеров и реплик данных. А за счет высокой производительности и асинхронной обработки сообщений Kafka способен обрабатывать миллионы сообщений в секунду с низкой задержкой.
🔵 Kafka используют для сбора, обработки и анализа потоков данных в реальном времени для Big Data, а еще для обмена данными между микросервисами и управления событиями в системах Internet of Things.
Добавить комментарий